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ORDERED FLUIDS

Partially ordered fluids are ubiquitous
in nature and have a wide range of
applications.

� Liquid crystals, here depicted in
nematic and smectic phases.

� Ferrofluids, i.e. a colloidal
suspension made of nanoscale
ferromagnetic or ferrimagnetic
particles.

� Gas saturated magma melts
and other fluids with
non-diffusive bubbles.
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A KINETIC THEORY APPROACH

� A kinetic theory approach seeks to describe the
evolution of the fluid using a statistical description
and knowledge of the microscopic interactions.

� Typically, this is done by considering only binary
interactions between fluid constituents. This is a
good approximation for dilute systems.

� In certain cases, the partial ordering of the fluid is a
consequence of the dilute nature of the system.

Onsager’s Approach To Liquid Crystals

Onsager first explained the emergence of nematic
ordering in liquid crystals by a truncation of the
Mayer cluster expansion, valid for dilute systems.

] J. Am. Chem. Soc. 2011 133 (8),
2346-2349 (A. Kuijk, A. van
Blaaderen, A. Imhof).

U. Zerbinati Kinetic Theory of Ordered Fluids Prague, 23rd Oct. ’24 2 / 37



A KINETIC THEORY APPROACH

� A kinetic theory approach seeks to describe the
evolution of the fluid using a statistical description
and knowledge of the microscopic interactions.

� Typically, this is done by considering only binary
interactions between fluid constituents. This is a
good approximation for dilute systems.

� In certain cases, the partial ordering of the fluid is a
consequence of the dilute nature of the system.

Onsager’s Approach To Liquid Crystals

Onsager first explained the emergence of nematic
ordering in liquid crystals by a truncation of the
Mayer cluster expansion, valid for dilute systems.

] J. Am. Chem. Soc. 2011 133 (8),
2346-2349 (A. Kuijk, A. van
Blaaderen, A. Imhof).

U. Zerbinati Kinetic Theory of Ordered Fluids Prague, 23rd Oct. ’24 2 / 37



A KINETIC THEORY APPROACH

� A kinetic theory approach seeks to describe the
evolution of the fluid using a statistical description
and knowledge of the microscopic interactions.

� Typically, this is done by considering only binary
interactions between fluid constituents. This is a
good approximation for dilute systems.

� In certain cases, the partial ordering of the fluid is a
consequence of the dilute nature of the system.

Onsager’s Approach To Liquid Crystals

Onsager first explained the emergence of nematic
ordering in liquid crystals by a truncation of the
Mayer cluster expansion, valid for dilute systems.

] J. Am. Chem. Soc. 2011 133 (8),
2346-2349 (A. Kuijk, A. van
Blaaderen, A. Imhof).

U. Zerbinati Kinetic Theory of Ordered Fluids Prague, 23rd Oct. ’24 2 / 37



A KINETIC THEORY APPROACH

� A kinetic theory approach seeks to describe the
evolution of the fluid using a statistical description
and knowledge of the microscopic interactions.

� Typically, this is done by considering only binary
interactions between fluid constituents. This is a
good approximation for dilute systems.

� In certain cases, the partial ordering of the fluid is a
consequence of the dilute nature of the system.

Onsager’s Approach To Liquid Crystals

Onsager first explained the emergence of nematic
ordering in liquid crystals by a truncation of the
Mayer cluster expansion, valid for dilute systems.

] J. Am. Chem. Soc. 2011 133 (8),
2346-2349 (A. Kuijk, A. van
Blaaderen, A. Imhof).

U. Zerbinati Kinetic Theory of Ordered Fluids Prague, 23rd Oct. ’24 2 / 37



ORDER PARAMETER MANIFOLD
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Order Parameter Manifold

ORDER PARAMETER MANIFOLD

Order Parameter Manifold

We say that the tuple (M,A) is an order param-
eter manifold if M is a smooth manifold with a
fixed parametrization, and A is a Lie group action
of SO(3) on M, i.e. the map A is smooth enough
to be differentiable.

Furthermore, we say that a field ν : E3 → M is an
order parameter field if ∀c ∈ R3 and ∀Q ∈ SO(3)
we have

ν(Qx+ c) = A(Q, ν(x)), ∀x ∈ E3.

] Continua with microstructure,
(G. Capriz),

Differential geometry and continuum
mechanics, (G. Capriz,
R.J. Knops).

� We need to understand what
manifold M captures the nature
of the order parameters.

� We need to understand the
action of rotations on the
manifold M.
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Order Parameter Manifold

AN EXAMPLE: NEMATIC LIQUID CRYSTALS
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] Variational Theories for Liquid
Crystals, (E. Virga),

The Physics of Liquid Crystals,
(P.G. de Gennes, J. Prost).

� We can represent the state of a
calamitic molecule using the set
of Euler angles θ, ϕ, ψ.

� We can also represent the state
of a calamitic molecule using a
director field ν ∈ S2.

� For head-tail symmetric calamitic
molecules, we can use RP2.
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Order Parameter Manifold

EMBEDDING RESULTS

Emedding theorems

� Any compact orientable 2-manifold can be
embedded in R3.

� The real projective space RP2 can not be
embedded in R3.

� The real projective space RP2 can be embed-
ded in R4.

] Curves and Surfaces, (M. Abate,
F. Tovena),

Topology, (M. Manetti).

� We can embed the director field
ν in R3 and work with a vector
space structure.

�� We can embed the real projective
space RP2 in R4 and work with a
vector space structure.
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THE MICROSCOPIC WORLD

2



The Microscopic World

LAGRANGIAN MECHANICS OF THE CONSTITUENTS

We will here assume that the fluid is composed of a set
of constituents, each of which is described by a position
xi , a velocity v i , the order parameter νi and its total
time derivative ν̇ i .

Li :=
1

2
m1(ẋ i · ẋ i ) +

1

2
ν̇ i · Ωi

(νi )ν̇ i .

We assume the interaction between the constituents is
given by a potential W(|xi − xj |, νi , νj), i.e.

Li,j = Li (xi ,Ξi ) + Lj(xj ,Ξj) +W(|xi − xj |, νi , νj),

where Ξi := (v i , νi , ν̇ i ).

ℓ

a

ν

U. Zerbinati Kinetic Theory of Ordered Fluids Prague, 23rd Oct. ’24 6 / 37



The Microscopic World

LAGRANGIAN MECHANICS OF THE CONSTITUENTS

We will here assume that the fluid is composed of a set
of constituents, each of which is described by a position
xi , a velocity v i , the order parameter νi and its total
time derivative ν̇ i .

Li :=
1

2
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The Microscopic World

NOETHER’S THEOREM: SYMMETRIES AND CONSERVATION LAWS

Noether’s theorem

If a Lagrangian L is invariant under a group action
with infinitesimal generators G then

d

dt

(
∂L
∂q̇1,2

· G
)

= 0, q1,2 = (x1, x2, ν1, ν2) .

In other words for any physical symmetry of the
system, there is a conserved quantity.

] Analytical Mechanics: An
Introduction, (A. Fasano,
S. Marmi).

� The Lagrangian L is invariant
under translations, i.e. the linear
momentum is conserved.

� The Lagrangian L is independent
of time and the kinetic energy is
a homogeneous quadratic form
of the conjugate moments,
i.e. the energy is conserved.
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The Microscopic World

NOETHER’S THEOREM: SYMMETRIES AND CONSERVATION LAWS

Infinitesimal Generator of A

For fixed ν ∈ M, the orbit map

Aν : SO(3) → SO(3)ν, Q 7→ A(Q, ν),

is differentiable at the identity.

We will denote by Aν : SO(3) → TνM the differ-
ential of Aν at the identity.
Composing the canonical isomorphism R3 →
SO(3) with the differential of the orbit map we
obtain a map Aν : R3 → TνM.

] Continua with microstructure,
(G. Carpiz),

Differential geometry and continuum
mechanics, (G. Carpiz,
R.J. Knops).

Assuming that the Lagrangian L is
frame-indifferent, i.e. invariant under
the action of SO(3), we have:

G = (r × x, r × x ,Aνr,Aνr) ,

where r is the rotation axis. Thus,
the angular momentum is conserved.
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BBGKY HIERARCHY
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BBGKY Hierarchy

HAMILTONIAN MECHANICS OF THE CONSTITUENTS

We introduce the Hamiltonian formalism associated to the Lagrangian L introduced in the
previous section. As usual, we introduce the conjugate momenta to the generalised
coordinates, i.e.

pi :=
∂L
∂ẋi

= mẋi , ςi :=
∂L
∂ν̇i

= Ω(ν) ν̇i .

We then introduce the Hamiltonian H of the full system of N constituents, only interacting in
pairs, as

H :=
N∑
i=1

1

2m
pi · pi +

1

2
ςi · Ω(ν)−1 ςi +

∑
1≤i<j≤N

W(|xi − xj |, νi , νj).

The Legendre transform of the Lagrangian L is always well-defined, assuming Ω(ν) is
symmetric and positive definite for all ν ∈ M.
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BBGKY Hierarchy

STATISTICAL MECHANICS APPROACH

We will also denote Γi := (xi , pi , νi , ς i )
the phase space point of the i-th con-
stituent, and introduce

π
(
{Γi}Ni=1

)
:=

N∑
i=1

δ (Γi − Γ∗i (t))

the Klimontovich distribution func-
tion, where Γ∗i (t) is the configuration of
the i-th constituent at time t.

We will denote πs the marginals of the
Klimontovich distribution function, with
respect to Γ(s) = (Γs+1, . . . , ΓN), i.e.

πs ({Γi}si=1) :=

∫
π
(
{Γi}Ni=1

)
dΓ(s).

The distribution function πs is called
the s-particle distribution function,
and represents the probability of find-
ing s particles in the phase space point
Γ1, . . . , Γs .
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BBGKY Hierarchy

BOGOLIUBOV–BORN–GREEN–KIRKWOOD–YVON HIERARCHY

]
An Introduction to the Theory of the Boltzmann Equation, (S. Harris),
Statistical Physics of Particles, (M. Kardar),
Statistical Mechanics, 2nd Edition (K. Huang).

Let fs denote the normalised πs . We obtain the following expression for the BBGKY hierarchy,

∂fs
∂t

+ {πs ,Hs} =

∫ s∑
i=1

∂fs+1

∂p
i

· ∂W(|xi − xs+1|, νi , νs+1)

∂xi
dΓs+1

+

∫ s∑
i=1

∂fs+1

∂ς i
· ∂W(|xi − xs+1|, νi , νs+1)

∂νi
dΓs+1,

where Hs =
(∑s

i=1

|pi |2

2m + 1
2 ςi · Ω(ν)

−1ςi

)
+
∑

1≤i<j≤sW(|xi − xj |, νi , νj).
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BBGKY Hierarchy

BOGOLIUBOV–BORN–GREEN–KIRKWOOD–YVON HIERARCHY

The first two terms of the BBGKY hierarchy, under the assumption that there are no
three-body interactions, amount to

∂f1
∂t

+
p
1

m
· ∂f1
∂x1

+Ω(ν1)
−1ς1

∂f1
∂ν1

=

+

∫
∂W(|x1 − x2|, ν1, ν2)

∂x1

( ∂f2
∂p

1

− ∂f2
∂p

2

)
+

∫
∂W(|x1 − x2|, ν1, ν2)

∂ν1

( ∂f2
∂ς1

− ∂f2
∂ς2

)

∂f2
∂t

+
p
1

m
· ∂f2
∂x1

+Ω(ν1)
−1ς1 ·

∂f2
∂ν1

+
p
2

m
· ∂f2
∂x2

+Ω(ν2)
−1ς2 ·

∂f2
∂ν2

− ∂W(|x1 − x2|, ν1, ν2)
∂x1

( ∂f2
∂p

1

− ∂f2
∂p

2

)
− ∂W(|x1 − x2|, ν1, ν2)

∂ν1

∂f2
∂ς1

= 0
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BBGKY Hierarchy

BOGOLIUBOV–BORN–GREEN–KIRKWOOD–YVON HIERARCHY

To highlight the same timescale separation in the second term of the hierarchy we introduce
fast and slow varying coordinates, i.e.

x = x2 − x1, X =
1

2
(x2 + x1) .

We then boxed the terms that are quickly varying in the second equation of the BBGKY
hierarchy, i.e.

∂f2
∂t

+
1

2

p
2
+p

1

m
· ∂f2
∂X

+Ω(ν1)
−1ς1 ·

∂f2
∂ν1

+Ω(ν2)
−1ς2 ·

∂f2
∂ν2

+
p
2
−p

1

m
· ∂f2
∂x

− ∂W(|x1 − x2|, ν1, ν2)
∂x1

·
( ∂f2
∂p

1

− ∂f2
∂p

2

)
− ∂W(|x1 − x2|, ν1, ν2)

∂ν1
· ∂f2
∂ς1

= 0
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BBGKY Hierarchy

EMBEDDED BOGOLIUBOV–BORN–GREEN–KIRKWOOD–YVON HIERARCHY

Using the embedding results previously discussed, we can use the fast and slow varying
coordinates also for the order parameters, i.e.

n = ν2 − ν1, N =
1

2
(ν2 + ν1) .

We then introduce A = 1
2

(
Ω

2
(νa1)

−1ς1 +Ω
2
(ν2)

−1ς2
)
, B =

(
Ω

2
(ν2)

−1ς2 − Ω1(ν1)
−1ς1

)
, i.e.

∂f2
∂t

+
1

2

p
2
+p

1

m
· ∂f2
∂X

+ A · ∂f2
∂N

+ B · ∂f2
∂n

+
p
2
−p

1

m
· ∂f2
∂x

− ∂W(|x1 − x2|, ν1, ν2)
∂x1

·
( ∂f2
∂p

1

− ∂f2
∂p

2

)
− ∂W(|x1 − x2|, ν1, ν2)

∂ν1
·
( ∂f2
∂ς1

− ∂f2
∂ς2

)
= 0.
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BOLTZMANN–CURTISS EQUATION

4



Boltzmann–Curtiss Equation

] J. Chem. Phys. 1956, 24, 225–241 (C. F. Curtiss),
J. Chem. Phys. 1963, 38, 2352–2363 (C. F. Curtiss, J. S. Dahler).

We can obtain from the embedded BBGKY hierarchy the following Boltzmann type equation,

∂t f +∇x · (vf ) +∇α · (α̇f ) = C [f , f ] (1)

where f (x, v , α, ς) is the probability of having a particle at (x, v , α, ς) in configuration space,
normalised by 1

n .

C [f , f ] =

∫∫∫∫
(f

′

1 f
′
− f1f )(k · g)S(k)dkdv1dα1dς1

with S(k)dk being the surface element of the excluded volume and g=v1−v + ω1×x1−ω×x.

U. Zerbinati Kinetic Theory of Ordered Fluids Prague, 23rd Oct. ’24 15 / 37



Boltzmann–Curtiss Equation

] J. Chem. Phys. 1956, 24, 225–241 (C. F. Curtiss),
J. Chem. Phys. 1963, 38, 2352–2363 (C. F. Curtiss, J. S. Dahler).

We can obtain from the embedded BBGKY hierarchy the following Boltzmann type equation,

∂t f +∇x · (vf ) +∇α · (α̇f ) = C [f , f ]

where f (x, v , α, ς) is the probability of having a particle at (x, v , α, ς) in configuration space,
normalised by 1

n .

C [f , f ] =

∫∫∫∫
(f

′

1 f
′
− f1f )(k · g)S(k)dkdv1dα1dς1

with S(k)dk being the surface element of the excluded volume and g=v1−v + ω1×x1−ω×x.

U. Zerbinati Kinetic Theory of Ordered Fluids Prague, 23rd Oct. ’24 15 / 37



Boltzmann–Curtiss Equation

COLLISION INVARIANTS

] J. Chem. Phys. 1956, 24, 225–241 (C. F. Curtiss),
J. Chem. Phys. 1963, 38, 2352–2363 (C. F. Curtiss, J. S. Dahler),
Multiscale Model. Simul. 2024, accepted (P. E. Farrell, G. Russo, U. Z.).

It is possible to prove that the following quantities are collision invariants for C [f , f ], i.e.∫∫∫
ψ(i)C [f , f ]dv1dς1dα1 = 0.

▶ ψ(1) = 1, the number of particles in the system;

▶ ψ(2) = mv , the linear momentum;

▶ ψ(3) = I · ω + x×mv , the angular momentum;

▶ ψ(4) = 1
2mv · v + 1

2ω · I · ω, the kinetic energy of the system.
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Boltzmann–Curtiss Equation

THE HYDRODYNAMIC EQUATIONS – NOTATION

] J. Chem. Phys. 1956, 24, 225–241 (C. F. Curtiss),
J. Chem. Phys. 1963, 38, 2352–2363 (C. F. Curtiss, J. S. Dahler).

We first introduce the number density, i.e.

n(x) =

∫∫∫
f (x, v , α, ς)dvdαdς.

Then we can give a meaning to the following chevrons, i.e.

⟨⟨·⟩⟩(x) := 1

n(x)

∫∫∫
· f (x, v , α, ς)dvdαdς.

Using this notation we can define macroscopic stream velocity and macroscopic stream
angular velocity respectively as:

v0 := ⟨⟨v⟩⟩, ω0 := ⟨⟨ω⟩⟩.
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Boltzmann–Curtiss Equation

THE HYDRODYNAMIC EQUATIONS – CURTISS BALANCE LAWS

] J. Chem. Phys. 1956, 24, 225–241 (C. F. Curtiss),
J. Chem. Phys. 1963, 38, 2352–2363 (C. F. Curtiss, J. S. Dahler).

Testing (1) against the first two collision invariants and integrating, Curtiss obtained the
following balance laws:

∂tρ+∇x · (ρv0) = 0,

ρ
[
∂tv0 + (∇xv0)v0

]
+∇x · (ρP) = 0,

where ρ is the density defined as ρ(x) = mn(x) and P is the pressure tensor defined as
P := ⟨⟨V ⊗ V ⟩⟩, with V being the peculiar velocity V := v − v0.
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Boltzmann–Curtiss Equation

THE HYDRODYNAMIC EQUATIONS – SURPRISE BALANCE LAWS

] J. Chem. Phys. 1956, 24, 225–241 (C. F. Curtiss),
J. Chem. Phys. 1963, 38, 2352–2363 (C. F. Curtiss, J. S. Dahler).

For the third collision invariant we took a different route than Curtiss, which led to the
following balance law

ρ
[
∂tη + (∇xη)v0

]
+∇x · (ρN) = ξ,

where η is the macroscopic intrinsic angular momentum defined as η(x) := ⟨⟨I · ω⟩⟩ and N is
the couple tensor defined as N := ⟨⟨V ⊗ (Iω)⟩⟩. Here ξl is defined in tensor notation as
⟨⟨mn(εlkivivk)e l⟩⟩ and we proved that ξ vanishes.
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Boltzmann–Curtiss Equation

MAXWELL–BOLTZMANN DISTRIBUTION

] J. Chem. Phys. 1956, 24, 225–241 (C. F. Curtiss),
J. Chem. Phys. 1963, 38, 2352–2363 (C. F. Curtiss, J. S. Dahler).

Curtiss gives an expression for the Maxwell–Boltzmann distribution, i.e. the distribution f (0)

such that C [f (0), f (0)] vanishes:

f (0)(v , ω) =
n sin(α2)Q∫
Q sin(α2)dα

m
3
2

(2π⟨⟨θ⟩⟩)3
(Γ)

1
2 exp

[
−m

|V |
2⟨⟨θ⟩⟩

− Ω · I · Ω
2⟨⟨θ⟩⟩

]
,

where the peculiar angular velocity defined as Ω := ω− ω0, Γ =
∏3

i=1 Γi , Γi are the moments

of inertia of the spherocylinder we are considering and Q := exp
[
ω0·I·ω0

2θ

]
.

Notice in particular that we assumed ω0 is the kinetic temperature of the system measured in
energy units.
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Boltzmann–Curtiss Equation

MOMENTUM CLOSURE AROUND THE EQUILIBRIUM

Now we can use the Maxwell–Boltzmann distribution to compute an approximation of the
pressure tensor near the equilibrium, i.e.

P(0) =
Γ

3m
⟨⟨θ⟩⟩Id .

[
∂tv0 + (∇xv0)v0

]
= −1

ρ
∇p,

Unfortunately the same procedure results in a vanishing N(0).
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Boltzmann–Curtiss Equation

NOETHER’S THEOREM AND MOMENTUM COUPLING

Let us consider the equation for the angular momentum, and observe that under the
assumption N(0) = 0 it reads

η̇ = ξ = 0.

In particular, this is a consequence of Noether’s theorem since when N(0) = 0 we have a
rotationally invariant Lagrangian.

Near the thermal equilibrium is the fluid isotropic? No!
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Boltzmann–Curtiss Equation

THE NEMATIC ORDERING AND THE INERTIA TENSOR

We know that for a slender body the inertia tensor can be decomposed as,

I = λ1(I − ν ⊗ ν) +O(ε)

where ε = ( ra )
2. Furthermore, the macroscopic kinetic energy can be computed as

m
1

2
|v0|2 +

1

2
ω0 · Iω0 =

1

2
m|v0|2 +

λ1
2
|ν̇|2 +O(ε),

as ε→ 0 we retrieve the same energy that is the starting point for Ericksen theory of
anisotropic fluids.
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Boltzmann–Curtiss Equation

BALANCE LAWS FOR KINETIC TEMPERATURE

] Multiscale Model. Simul. 2024, accepted (P. E. Farrell, G. Russo, U. Z.),

We need another way to formulate the constitutive relation for the couple tensor. We begin
by observing that from ψ(4) we get the following balance law:

ψ̇0 +∇xv0 : (ρP) +∇xω0 : (ρN)−∇ ·
[
PT v0 + NTω0

]
+∇x · Q = 0

where ψ0 = ⟨⟨θ⟩⟩, Q = 1
2 ⟨⟨V (m|V |2 +Ω · IΩ)⟩⟩, and

θ =
m

2
V · V +

1

2
Ω · I · Ω.

This is a kinetic derivation of Leslie’s rate of work hypothesis.
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Boltzmann–Curtiss Equation

THE OSEEN-FRANK STORED ENERGY

] Multiscale Model. Simul. 2024, accepted (P. E. Farrell, G. Russo, U. Z.),

Making use of the fact that ν̇ = ω × ν = ∂tν(∇ν)v we can rewrite part of the stored energy as

ψOF (ν,∇ν) =
1

2
Ω · IΩ =

λ1
2
tr
[
∇νTP(0)∇ν

]
.

Using P(0) we get a stored energy functional very similar to the Oseen-Frank energy

ψOF = p
λ1
2
tr
[
∇νT∇ν

]
.
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Boltzmann–Curtiss Equation

NOLL–COLEMAN PROCEDURE

] Multiscale Model. Simul. 2024, accepted (P. E. Farrell, G. Russo, U. Z.),

Since we are happy with our pressure tensor, we make the following ansatz

ψ = ψ(ν,∇ν)

where ν is the nematic director. Expanding the total derivative and using the Ericksen
identity we get the following expression in tensor notation

ψ̇ = εiqp

[
(νq

∂ψ

∂(νp)
+ ∂k(νq)

∂ψ

∂(∂kνp)
)ω0

i + νq
∂ψ

∂(∂kνp)
∂kω

0
i

]
− ∂ψ

∂(∂kνp)
∂q(νp)∂(v

0
q )
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Boltzmann–Curtiss Equation

NOLL–COLEMAN PROCEDURE

] Multiscale Model. Simul. 2024, accepted (P. E. Farrell, G. Russo, U. Z.),

Substituting this expression in the Theorem of Power Expended and considering
thermodynamic processes for which the exact divergences disappear, we get:[

Pij +
∂ψ

∂(∂jνp)
∂i (νp)

]
∂j(νi ) +

[
Nij − εiqpνq

∂ψ

∂(∂jνp)

]
∂j(ω

0
i )[

Ppq −
∂ψ

∂(∂pνk)∂q(νk)

]
εiqpω

0
i ≥ 0.

Since the above expression must hold for all thermodynamic processes for which the exact
divergences disappear, we get the following constitutive relations:

P = ∇νT ∂ψ

∂(∇ν)
+ P(0), Nij = εiqpνq

∂ψ

∂(∂jνp)
= ν × ∂ψ

∂(∇ν)
.
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Boltzmann–Curtiss Equation

COMPRESSIBLE LESLIE–ERICKSEN EQUATIONS

] Multiscale Model. Simul. 2024, accepted (P. E. Farrell, G. Russo, U. Z.),

This leads to the following set of equations, which can be seen as an inviscid compressible
generalisation of the Leslie–Ericksen equations:

∂tρ+∇x · (ρv0) = 0,

ρ
[
∂tv0 + (∇xv0)v0

]
+∇x ·

(
pK I + pK

λ1
2
∇xν

T∇xν
)
= 0,

ρ
[
∂tν + (∇xν)v0

]
+∇x ·

(
pK
λ1
2
∇xν

)
= τν,

ρ
[
∂tψ0 +∇xψ0 · v0

]
+
(
pK I + pK

λ1
2
∇xν

T∇xν
)
: ∇xv0 = 0.
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A Vlasov–type equation

VLASOV–TYPE EQUATION

From the separation of timescales in the BBGKY hierarchy we obtain the following identity,

p
2
− p

1

m
· ∂f2
∂x

=
∂W
∂x1

(|x1 − x2|, ν1, ν2) ·

(
∂f2
∂p

1

− ∂f2
∂p

2

)
.

Substituting this identity in the second equation of the BBGKY hierarchy we obtain the
following equation,

∂f1
∂t

+
p
1

m
· ∂f1
∂x1

+Ω(ν1)
−1ς1 ·

∂f1
∂ν1

=

∫
p
2
− p

1

m
· ∂f2
∂x

dΓ2

+

∫
∂W(|x1 − x2|, ν1, ν2)

∂ν1
· ∂f2
∂ς1

dΓ2.
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A Vlasov–type equation

WEAK-ORDER INTERACTIONS

We might be tempted to assume inter-
actions are weak,

f2(Γ1, Γ2, t) = f1(Γ1, t)f1(Γ2, t).

This leads to equations of a reversible
nature, compatible with Loschmidt’s
paradox.
Thus, we have no guarantee that
the system described thermalises to a
Maxwellian distribution.

Weak-order Interactions

We will say that a kinetic equation is gov-
erned by weak-order interactions if the
derivative of the two-particle distribution
function factorises as,

∂νi f2(Γ1, Γ2, t) = f1(Γi , t)∂νi f1(Γj , t),

∂ςi f2(Γ1, Γ2, t) = f1(Γj , t)∂ςi f1(Γi , t),

for i ̸= j and i , j = 1, 2.
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A Vlasov–type equation

VLASOV–TYPE EQUATION

Under the assumption of weak-order interactions we can rewrite the first equation of the
BBGKY hierarchy as,

∂f

∂t
+ ẋ · ∇xf + ν̇ · ∇ν f + V · ∇ς f = C [f , f ],

where the collision operator C [f , f ] can be written using the transition “probability” W as,

C [f1, f1]=

∫
dΞ′

1 dΞ
′
2dΞ2

∫ π
2

0

∫ 2π

0

W (Ξ′
1,Ξ

′
2 7→ Ξ1,Ξ2) f1(Γ

′
1, t)f1(Γ

′
2, t)

−W (Ξ1,Ξ2 7→ Ξ′
1,Ξ

′
2) f1(Γ1, t)f1(Γ2, t) dθ2 dφ2.
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A Vlasov–type equation

BOLTZMANN INEQUALITY AND THERMALISATION

] J. Stat. Phys. Volume 26, 795–801 (C. Cercignani, M. Lampis).

As we said before the collision operator C [f , f ] considered here guarantees that the system
thermalises to a Maxwellian distribution. In particular, we can prove∫

dΞ log(f (Γ, t))C [f , f ] ≤ 0,

which is a generalisation of the Boltzmann inequality for Boltzmann’s equation with internal
degrees of freedom. Following the classical calculus of variation approach we can prove that
the unique Maxwellian with prescribed collision invariants is

f̄ (Γ, t) = exp
(
a+ b · p + c(p × x+ wν × ς) + d(m−1p · p + ς · Ω(ν)−1ς)

)
.
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A Vlasov–type equation

THE HYDRODYNAMIC EQUATIONS

Testing the Vlasov–type equation against the first three
collision invariants we obtain the following balance laws,

∂tρ+∇x · (ρv0) = 0,

ρ
[
∂tv0+(∇xv0)v0

]
+∇x·(ρP) = 0, P = ⟨⟨V⊗V ⟩⟩.

ρ
[
∂tη+(∇xη)v0

]
+∇x ·(ρN) = ξ, N = ⟨⟨V ⊗η⟩⟩.

Angular Momentum

The action of infinitesimal gen-
erators Aν can be identified via
the canonical isomorphism be-
tween R3 and TνM as the
cross-product between a vec-
tor wν and the rotation vector
r . For this reason, the angular
momentum is defined as

η = ⟨⟨wν × Ω(ν)ν̇⟩⟩
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A Vlasov–type equation

BOLTZMANN H-THEOREM

H-Theorem

Boltzmann inequality is the standard
tool used to prove the H-Theorem for
the Boltzmann equation. Testing the
Vlasov–type equation with ψ = log(f )
we obtain the following inequality,

ρḢ+∇x · (ρJ) +N + F ≤ 0,

H =

∫
dΞ log(f (Γ, t))f (Γ, t).

J =

∫
dΞ v log(f (Γ, t))f (Γ, t).

N =

∫
dΞ ν̇ · ∇ν log(f (Γ, t))f (Γ, t).

F =

∫
dΞV · ∇ν̇ log(f (Γ, t))f (Γ, t).
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A Vlasov–type equation

THE ISSUE WITH NOLL–COLEMAN CLOSURE

If we test with the forth collision invariant the Vlasov type equation, we obtain

∂t

(
ρ⟨⟨1

2
(v · v) + 1

2
ν̇ · Λ ν̇⟩⟩

)
+∇x ·

[
ρ⟨⟨v 1

2
(v · v) + v

1

2
ν̇ · Λ ν̇⟩⟩

]
+ ρ⟨⟨V · Λ ν̇⟩⟩ = 0.

Playing the same game we did for the Curtiss-Boltzmann equation, we obtain

ψ̇0 + P : ∇xv +M : ∇xη + ⟨⟨V · Λ ν̇⟩⟩ = −∇x ·Q.

with the internal energy ψ0 being defined as,

ψ0 =
1

2
⟨⟨v · v⟩⟩+ 1

2
λ(ν̇ · ν̇)− 1

2
|v|2 − 1

2
η · Λ−1 η,
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A Vlasov–type equation

THE Sm−1 TYPE MANIFOLD

We can express the total time derivative
of

ν̇ = Λ−1η × wν − wν(wν · ν̇).

The Sm−1 type manifold

On any sphere like manifold, i.e.text

M =
{
ν ∈ Rm : (ν, ν) = R

}
,

the previous identity simplifies to:

ν̇ = Λ−1η.

We can use the following identity to
prove that the

ν̇ · (η × wν) = (ν̇ · Λν̇)− ν̇ · wν(wν · Λν̇)
= η · Λ−1η.

This implies the internal energy has
no dependence on the internal de-
grees of freedom.
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A Vlasov–type equation

CONCLUSION

� We derived a general kinetic framework to study the dynamics of a system with partial
ordering.

� Using this framework, via the use of a larger embedding space, we used this framework to
study calamitic fluids.

▶ Using a Noll–Coleman argument for the closure of the momentum hierarchy allows us
to retrieve the Ericksen stress tensor.

▶ From the kinetic theory of spherocylindrical molecules, we derived a compressible
and thermally coupled model for the flow of fluids with a nematic order.

▶ From the kinetic theory of spherocylindrical molecules, we can only derive the
poor–man Oseen–Frank energy.

� We have dervied a Vlasov–type equation for the dynamics of a system with partial
ordering, that doesn’t require the use of large embedding space.
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THANK YOU!

A Kinetic Framework for Fluids with Partial Ordering

Umberto Zerbinati*
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